導航雲台書屋>>百科書籍>>科恩>>科學中的革命

雲台書屋

第二十一章 一些其他的科學發展


  達爾文和麥克斯韋的革命,並不是在他們所處的時代被認為是革命性的而在我們今天所處的時代仍可能被普遍認為是革命的生物學和物理學中唯一的劇變。歷史學家和科學家在從數學和統計學到地質學和醫學等領域中,提出了19世紀科學革命的許多候選者。在這一章中,我們將簡短考察一下這其中的一些發展,最後再概括地說一下應用科學領域中的偉大革命。

  賴爾在地質學中的革命

  在考察19世紀期間地球科學中的進步時,倫納德·威爾遜所舉出的實例是「在1841年之前」所發生的「地質學中的革命」。在這一年,賴爾創立了他的「均變說」;他在其3卷本《地質學原理》(1830-1833)中對這一學說和理論作了詳盡闡述。正如賴爾在1829年的一封信中所解釋的,他的目標是宏偉的(威爾遜,1972,256)。他說,儘管他的書「不敢妄想對地質學中所有已知的東西作出概括」,但是,它「將努力確立起科學中的推理原則,而且,作為對我關於那些原則的看法的描述,作為鞏固由於接受這些原則而必然產生的體系的證據,整個我的地質學將呈現在人們面前」。從根本上說,他認為,「除了那些現在發生作用的原因外,從我們可以追憶的遠古一直到目前,無論什麼東西,都不曾有任何原因發生過作用。而且那些現在發生作用的原因,也從未發生過與它們現在所發揮的作用的能量不同的作用」。威爾遜認為,他書中的第17章,「以『依據現在發揮作用的原因解釋他表以前的變化』為題,實現了這一諾言」(p.280入此外,賴爾在該書中還用四章的篇幅陳述了「顯然是新的和創造性的思想」。威爾遜斷言,這本書是「革命性的」(p.280,281,293),因此前進了一大步。他同時還強調指出,這本書是造詣精深的,而且人們爭相購買。我們可以補充說,這本書的不同版本接連不斷地問世(第2版,3卷本,1832-1833;第3版,4卷本,1834),說明了人們對該書的興趣以及該書具有的重要性。因此,顯然,如果這確實是一場革命,那麼它就不只是論著中的一場革命。

  但是,並非所有研究地質學的史學家都贊同威爾遜的結論:「賴爾在人們關於地球歷史的思想中開始了一場革命」(p.293)。在對威爾遜傳記的一篇評論中(載1973年6月5日《科學》,179:57-58),塞西爾·施奈爾論述了人們可以用來「駁斥傳記作者」的證據,而且他認為,「賴爾的均變論思想並沒有多少新穎之處,而且,就說他的思想是革命性的思想的根據而言,它們對於正在出現的世俗的世界史也是無關緊要的」。的確,威爾遜所引證的任何斷言賴爾的《地質學原理》是革命性的或引起革命的評論家或同時代的闡釋者的論述,並沒有證實他自己的判斷。然而,正如我們已經看到的,只是在賴爾的論著第一卷發表20年之後,查爾斯·達爾文在《物種起源》第9章接近開始的地方(1859,282)才對「賴爾爵士關於地質學原理的宏篇巨著作了評價」。達爾文說,「未來的史學家將會認識到,它在自然科學中引起了一場革命」。在1844年的一封致倫納德·霍納的比較早的信中(達爾文,1903,2:117,見下文第29章所引),達爾文對這樣一種說法作了解釋。達爾文在信中說,在讀了賴爾的書之後,人們就會認為甚至新的現象「都是由他發現的」。關於賴爾革命的另外一個同時代的證明見於天文學家和哲學家約翰·赫歇爾1836年2月20日致賴爾的一封信。在該信中,赫歇爾說:「在我看來,你的《地質學原理》是那些在其學科中引起完全的革命的著作之一」(見巴貝奇,1938,n.l,p.226)。

  既然賴爾的地質學被他的同時代人視為革命性的學說,因此,一個決定性的歷史考驗是,此後地質學及其姊妹學科古生物學的歷史是否表明賴爾的著作發揮了與一場革命相當的作用。我認為,這是不成問題的。歷史學家之間的爭論反而集中在賴爾在多大程度上作了創新這一問題。在科學之中,絕對的創新似乎並不是革命的一個明確規定的特點。大多數(即使不是全部)革命表現出連續性的特點,因此,甚至科學中最激進的思想,都一次又一次地證明不過是對現存的傳統思想的改造。(1980年我在《牛頓的革命》中對這個主題作了充分的發揮。)這是科學的一個如此明顯的獨有的特徵,以致像阿爾伯特·愛因斯坦這樣的某些科學家最終認為他們的著作展現的是進化而非革命:對已知的或為人們所相信的東西的徹底改造或調整,而不是發明或創造某種新的東西。唯—一個反對人們說發生了一場賴爾革命的意見是,地球科學中的所有思想或觀點,並不都是以他提出的思想為條件的,但是,嚴格說來,這將限制那場革命的範圍和作用,但並木是全然否定它的

  生命科學中的進步

  在一本題為《19世紀的生物學》(1977)的研究著作中,威廉·科爾曼論述了生命科學中許多重要的革命。他對病理解剖學家「使傳統的局部解剖學和器官解剖學的事業革命化」的行動與細胞理論後來對病理解剖學的改造作了比較(p.20)。特別是他讓我們注意巴黎醫院中的醫生們在1800年前後「由於把對屍體的事後生理調查分析與對患者的痛苦的臨床描述」結合起來,而「在醫學中引起的一場革命」。在論「人」的一章中,科爾曼一開始就斷言,在拉馬克和海克爾之間發生了「一場人對其過去的意識中的一場革命」(p.92)。就此而言,科爾曼發現塗爾干的結論「確實是革命性的」(P.114)。在論「功能:動物機器」一章中,他描述了四位德國「還原論者」1847年是如何在柏林相遇的。這一年,正是「革命爆發的前一年,而且,與此有關,人們計劃在生理學的抱負和方法論中進行一場革命」(p.151)。該書最後說明了19世紀末的情況,並且考察了「對於生物學問題傾向於公開堅持一種生理學觀點的生物學的新成員」。實驗生理學「確立了一種在實驗中」理解「生命過程,日常的每時每刻都在發生著的事件——其總和就是生命——一的典型方法」。憑實驗之名,科爾曼斷言,「使生物學的目標和方法革命化的一場運動已經開始」。

  1858年,魯道夫·卡爾·菲爾紹發表了他的巨著《細胞病理學》;今天的許多人認為,這部著作預示著生物學中一場革命的到來。儘管人們對此並未普遍表示贊同,但是,幾乎無可懷疑的是,菲爾紹的理論引起了醫學的生物學基礎中的一場革命——菲爾紹本人曾表明這一點。菲爾紹對於我們具有特別的意義,因為他把其作為一個激進的改革者的積極的政治生涯與他在醫學病理學中的科學生涯結合在一起。1848年初,他奉政府派遣到西裡西亞調查當時該地一次斑疹傷寒的爆發,(正如他本人告訴我們的)他對波蘭少數民族朝不保夕的生活條件感到極大震驚。這一次經歷使他由一個持有自由主義社會和政治信念的人轉變成為一個倡導進行廣泛的社會和經濟改革的激進主義者。所以,並不奇怪,他參加了柏林的起義;這些起義是整個1848年革命的一部分,並且進行了巷戰。之後,他成為柏林民主大會的成員並且編輯發行《醫學改革》週刊。

  由於其革命的政治活動,他被取消了在柏林的學術地位,因此,他被迫移居維爾茨堡。1849年被任命為德國病理解剖學這一新學科的首任教授。在這裡,他獲得了作為科學家的重要地位,發展了我們所說的「細胞病理學」的概念。1856年他回到柏林,擔任新成立的「病理學研究所」的教授和所長。由於其教學以及關於在正常的健康條件下和異常的疾病條件下,細胞都是基本的單位,而疾病乃是活細胞的紊亂和失調造成的學說,他享有很高聲譽。他在後來的生涯中,發展了他的生物醫學概念,積極參加政治活動,關心公共衛生事業,並且創立了一種關於疾病的社會學理論。他甚至成為人類學這門新的科學的奠基者。

  1861年,他被選為代表德國進步黨的普魯士議會的議員。他是德國進步黨的創始人之一。他堅決反對啤斯麥。俾斯麥為此曾憤怒地向他提出決鬥,但是菲爾紹沒有接受這一決鬥。因此,他是一位非同尋常的偉大的科學家:他既是一位政治活動家和社會改革家,而且,他所進行的專業改革,不僅改變了醫學職業的規則,而且改善了公共衛生和醫療保健的狀況。其他一些科學家也曾是政治活動家,但是沒有什麼人達到像菲爾紹所達到的作為議會中俾斯麥的反對派的領袖這樣重要的或相當高的政治地位(弗萊明1964,X)。

  在他創辦的《醫學改革》週刊第一期中(1848年7月10日),菲爾紹把政治革命的思想與醫學改革相結合。他(在第1頁中)寫道,「國家狀態中的革命「Umwalzung」」以及「新的制度的建立」,是影響到整個歐洲所有有頭腦的男男女女的「政治風暴」的一部分,因此標誌著「整個生活觀念的徹底轉變」。他堅持認為,醫學不可能不受到這些風暴的影響,「不能再迴避和拖延一場激進的改革了」。歐文·阿克爾克奈克特(1953,44)認為,對於菲爾紹來說,「自由和科學是天然的盟友」,而且,「1848年革命既是一個政治事件,顯然也是一個科學的事件」。在其週刊中,菲爾紹寫道:「三月的時代終於到來。批判反對權威、自然科學反對教條、永恆的權利反對人們任意獨斷的常規的偉大鬥爭——這一鬥爭已經兩次動搖過歐洲社會——第三次爆發了,而且勝利是屬於我們的」。阿克爾克奈克特把政治與醫學的這個統一看作是菲爾紹思想的一個特色(p.45):

  細胞病理學理論對於菲爾紹本人來說是非常重要的,因為它似乎在客觀上揭示了人體中的他所努力探求而且認為在社會中是「自然的」一種情況……因此,對於菲爾紹來說,細胞病理學遠不止是一種生物學理論。就此而言,他的政治和生物學觀點是互相補充和加強的。細胞病理學揭示了人體是一個由彼此平等的個體組成的自由國家,是一個由細胞組成的聯邦,是一個民主的細胞國家。事實證明,人體是一個由彼此平等的因素組成的社會單位,而在體液的或凝固的(神經)病理學中,則設想了一種生物組織的非民主的寡頭政治。正像在政治領域中為爭取「第三等級」的權利而戰鬥一樣,因此菲爾紹也在細胞病理學中為人們沒有充分認識其價值和功能的細胞的「第三等級」(結締組織)而戰。

  因此,當我們發現菲爾紹談到如下事情時並不感到驚奇:「醫學的最後的任務或使命就是在一個生理學的基礎上組織社會」(引自同上書,46)。菲爾紹認為,社會科學是醫學的一個分支。由此他明確指出,「醫學是一門社會科學,而且政治學不過是大規模的或更高級的醫學」,「醫生是貧苦者的天生的代言人,而且,社會問題應當主要由他們來解決」。

  阿克爾克奈克特認為(1953,47),在其關於醫學實踐的著作中,菲爾紹「更喜歡『改革者』而非『革命者』的說法,因為在他看來,這是對把破壞和建設,把對他所擁護的過去的成就的批判和尊重結合和統一起來這一特點的更好的描述」。但是,就像在1848年那樣,他確實參加了革命的政治活動。

  在《細胞病理學》這部巨著(1858;英譯本,1860)的序言中,菲爾紹談到,醫學科學家有責任使他的「職業同行」廣泛瞭解迅速積累和不斷增長著的新知識。然後,他斷言:「我們要進行改革,而不是革命」。此外,他慨歎道(1858,iX;1860,X),他的著作似乎「有更多革命的而非改革的氣味」,但是,這主要是因為「必須首先反對最近的[現時代的」那些虛假的、錯誤的或獨斷的學說,而不是比較久遠的那些著作家的學說」。但是,在正文中,當他描述他在發展的激進的新思想時——而且正是他聲稱(1860,27)「在一個細胞出現的地方,以前必有細胞存在」之前——他使用了更引人注目的革命的形象。他明確提到「過去幾年」在病理學中所發生的『der Umschwung』(1860年英譯本中將此譯作『the revolution』)。他在這裡選擇了『Umschwung』,雖然在他談到政治或社會事件時通常使用『Umwalzung』,甚至『Revolution』這些詞。但是,就菲爾紹而言,重要的是,他是在科學中引起一場革命而且積極參加一場政治革命的非常少的幾個科學家之一。而且,他公開堅持他所提出的這樣一個觀點:革命的政治學和革命的科學可以是相互影響,甚至是相互補充和加強的。

  數學,概率和統計學

  數學在19世紀取得了巨大進步。新的領域得以開闢(例如,非歐幾里得幾何學,數理統計學,向量解析和四元法),而且新的嚴密的標準完全改變了古典的分析或功能理論(複雜變量的功能)。在19世紀末,喬治·康托爾創立了一門新的數學學科——超窮基數和超窮序數理論。人們把他偉大的貢獻描述為「向無窮王國的大膽推進」,它極大地推動了20世紀對數學的基本原理的研究(梅什考斯基:1971,56)。顯然,這是數學思想中的一場革命。康托爾本人充分意識到他的工作的革命意義。在1885年致康托爾的一封信中,瑞典數學家米塔格-列夫勒寫道,康托爾的工作同高斯對非歐幾里得幾何學的研究「一樣是革命性的」(杜本,1979,138)。而且,約瑟夫·杜本發現,在寫給法國科學史學家保羅·坦納裡(1934,13:304)的一封信中,康托爾直率不諱地說,他所從事的工作是革命性的。

  康托爾並不是19世紀自認為引起(或將要引起)一場革命的唯一的數學家。另外一位是愛爾蘭數學家威廉·羅恩·漢密爾頓爵士。托馬斯·L.漢金斯發現,漢密爾頓在1834年就他(在以前寫給他叔父的一封信中)所說的「他改造整個動力學——在這個詞的最廣泛的意義上說——的希望和決心」寫了一封值得注意的信。該信是漢密爾頓1834年寫給威廉·休厄爾的。漢密爾頓寫道(漢金斯,1980,177-178),新的動力學「也許將引起一場革命」。非數學家一般都不熟悉漢密爾頓的著作。我們上面作評論時剛剛引證的那篇論文就是《動力學的一般方法》(1834)。在該文中,漢密爾頓提出了他所說的「示性函數」的特性,並且揭示了「接近示性函數以把它運用到行星和替星的攝動的方法」(漢金斯1972,89)。示性函數是漢密爾頓兩個偉大的「發明」之一;另外一個偉大的發現是「四元法」(四元數),這是一個三維複數體系,人們可以用一種類似於向量解析的方法使用這個體系。J.威拉德·吉布斯所發明的向量解析最終取代了作為動力學和數學物理學語言的四元法(四元數)。(漢密爾頓的四元數在他們所處的時代是如此流行,而且又是如此完全適合物理學,以致J,C.麥克斯韋在他關於電和磁的著名的論著中把它們用於對電磁這個學科的數學表述。)漢密爾頓的論文「第一次對應用於動力學的示性函數作了一般性的陳述」(p.88〕,而且發展了我們今天所說的「漢密爾頓』原理。這篇論文的確是具有革命性的,因為,他在該文中推導出了運動的「典型方程組」,「漢密爾頓的主要函數」,以及漢密爾頓自己關於人們後來所說的漢密爾頓-雅可比方程的看法。漢密爾頓的《動力學的一股方法》這篇論文(1834;1835年作了增補)對經典力學作了公式化的說明,這個說明後來成為今天量子論和統計力學的權威標準。

  漢密爾頓方法,特別是雅可比發展了的方法,已證明對天體力學是尤為有用的。例如,它對於解決如何測定三個天體的運動——根據牛頓的萬有引力反比定律,其中的每一個天體都吸引著其他兩個天體——問題是特別重要的。由於人們普遍接受了向量解析以及張量解析,所以,在自然科學中已經淘汰了漢密爾頓的四元數。J.D.諾思認為(1969),歸根到底,漢密爾頓四元數理論的「壓倒一切的重要性」可能在於「它引入了一個非互換乘法定律」,這一定律「激勵其他的代數學家從他們的公理中」剔除互換律。(互換乘法定律指,兩個數相乘的次序並不影響其乘積——8乘以2的積與2乘以8的積相同。)

  在19世紀,有關概率和統計學的三個主要領域都獲得顯著的發展。第一個領域是數學理論(以拉普拉斯為先導),第二個領域是統計學應用於對社會的分析,從所謂的「道德統計學」開始;第三個領域是為科學引入了一個統計學基礎。其中第二個領域通常與比利時統計學家阿道夫·凱特爾的名字聯繫在一起。凱特爾以其關於某些數字恆久性或合規律性的意外發現——婚姻、死亡、出生、犯罪等等——而使全世界的讀者震驚。

  我們有一個相當充分的證據可以雄辯地證明有關社會的新的統計學的發現的革命影響。正如約翰·赫歇爾爵士在1850年所說的(PP.384-385),「人們開始驚奇地——但並不是沒有某些良好的渺茫的期望——聽到」

  不僅生死和婚嫁,而且法庭的判決,普選的結果,在抑制犯罪時所進行的懲罰的影響——醫療的比較值以及治療疾病的不同方式——自然研究的每一個部門的數字結果中的有限的概差——自然的、社會的和道德的原因的發現,——而且,甚至證據的重要度,以及合乎邏輯的論點的確實性——似乎都可以用對一個無偏見的分析的敏銳的徹查來測定。這裡所說的對一個無偏見的分析的敏銳的徹查,即使不會立刻導致實在(實證)真理的發現,至少也將保證發現和排除許多有害的和不斷侵擾的謬誤。

  這一段文字搞自《愛丁堡評論》(1850年7月)中關於剛剛出版的凱特爾與阿爾貝特國王有關《概率論》的通信集的譯本(1849)的一篇人們廣泛閱讀和爭論的文章(見赫歇爾1857,365ff.)。

  但是,發生過一場革命嗎?估計對社會所作的新的統計學的分析是否由於其深遠的意義而被視為一場統計學的革命的一個方法,就是認識反對新的統計學思維方法的激烈程度。以統計學為基礎的科學或知識的兩個反對者是奧古斯特.孔德和約翰·斯圖爾特·密爾。孔德在其《實證哲學教程》(bk.6,Ch.4)中嘲笑「某些幾何學家妄想使社會研究服從一種奇異的數學的概率論而使社會研究成為一種實證研究』h855,492)。孔德嚴厲駁斥詹姆斯·伯努利,尤其是孔多塞企圖把概率論和統計學應用到社會理論(或社會學)之中。他說(p.493)

  人們開始普遍認識到政治哲學的真髓,而且事實上由於孟德斯鳩、孔多塞本人的努力,這一真髓已被揭示出來,此外,社會的新的動盪也強有力地鼓舞著人們。在這樣一個時候,拉普拉斯再重複這樣一個哲學錯誤,是沒有任何理由的。從那時起,一系列模仿者用單調乏味的代數學的語言繼續重複這個幻想,而沒有增加任何新的東西,濫用了恰恰屬於真正的數學精神的榮譽;所以,這個謬誤現在只是將會使用它的政治哲學的極端無能的一個不自覺的證明,而不是像一個世紀之前那樣,是科學研究的不成熟的本能的一個象徵。再也沒有哪個概念比這個概念更荒謬了:它把一種假設的數學理論作為它的基礎或它的操作模式。在這種理論當中,符號被誤認為思想,我們計算和測定數字的概率;進行這種計算也就等於把我們自己的無知看作是測量我們各種觀點的幾率次序的自然手段。

  孔德反對統計學和概率論很可能是基於他這樣一個信念:「一切科學的目標都在可預見」(即準確的預言);他在1822年關於「改造社會」的一篇文章中提出了這一論點(弗萊徹1974,167)。為達到這一目的,「由對現象的觀察所確立的規律」應當使科學家能夠預言現象的接續和演替。由此可見,「對過去的觀察應當像我們在天文學、物理學、化學和生理學中所看到的那樣,揭示未來」。在《實證哲學教程》第六卷(「社會物理學」)中,孔德擴展和進一步發揮了這個論題。在其中的第三章中,孔德主張,「社會現象服從自然規律,同時容許合乎理性的預見」。孔德這裡所說的是合乎理性的經典力學的簡單的因果律的預言——他認為,這些預言與統計學和概率論的「不準確的」預言是相對立的。

  約翰·斯圖爾特·密爾在其最重要的或「主要的哲學著作」《邏輯體系》中,反對科學或社會科學中的統計學論點或對概率的誤用。密爾認為(1973-1974,1142),「確實需要有充分可靠的證據使任何有理性的人相信,我們的無知可以通過一個對數字起作用的系統而溶入到科學中去」。密爾又說,「這個奇怪的意圖無疑導致一位學識淵博的思想家——孔德先生——極端地反對整個的這個學說,儘管事實上保險業的實踐以及其他大量實在的經驗天天都在證明著這一學說」。這個陳述,如同《邏輯體系》第一版(1843)中的其他陳述一樣,在第二版和後來出版的其他版本中被刪除了;但是,沒有哪一位讀者會忽視或忘記這樣一個明顯的結論:密爾對於概率的基礎以及運用概率的有效性抱以完全否定的態度(見密爾1973-1974,8-9:bk.3,ch.17-18,app F,G,pp.1140-1153)。當密爾在其《邏輯體系》(1973-1974年,bk.3,ch.18,&3)中說「對概率運算的誤用」已經使之成為「數學的真正恥辱」時,人們對他的觀點就確信無疑了。

  許多科學家和哲學家或者直接反對在科學中使用概率和統計學,或者對在科學中使用它們的正確性表示極大懷疑。遲在1890年,彼得·格思裡·泰特在其《物質的特性》第2版中,可能仍然採取一種反統計學的態度,並且說到「由於對《概率論》的顯然是沒有根據的運用——統計學的方法正是以概率論為基礎的——而大大增加的」氣態運動論中「仍然存在著的困難」(p.291)。

  克勞德·貝爾納對在科學中對統計學和概率的運用進行了更頻繁的和坦率的批評。貝爾納通常被人們稱作近代實驗生理學的奠基人。他在其《實驗醫學研究導言》(1865;1927,131-139)中直率不諱地說他不知道「我們怎麼能夠在統計學的基礎上教授應用的精密科學」。他認為,對統計學的使用必然「只能產生推測的科學」,而且「永遠不可能產生出富有活力的實驗科學,即根據一定的規律調製現象的科學」。而且,他主張,「依據統計學,我們可以推測關於某個特定事例的或大或小的概率,但是卻永遠不可能獲得任何確實性,也永遠不可能獲得任何絕對的決定論」。既然「事實從來都不是同一的」,所以,「統計學只能是所進行的觀察的以經驗為根據的點查」(pp.138-139)。因此,如果醫學以統計學為基礎,那麼它就「只能是一種推測的科學;只有以實驗的決定論為基礎,它才能夠成為一門真正的科學,即一門可靠的科學」。貝爾納在這裡指出了他所說的「所謂觀察敏銳的醫生」的觀點與「實驗醫生」的觀點之間的區別。貝爾納認為,實驗科學導致了一種嚴密的決定論;他和其他生理學家認為,這種嚴密的決定論是與概率論或統計學的考慮或看法不相容的。

  在1904年聖路易斯萬國博覽會期間召開的「藝術和科學大會」上的一篇演說中,特別有哲學頭腦的理論物理學家路德維希·玻爾茲曼簡短地論述了如何把統計學應用於科學和社會科學。他捍衛「統計力學的定理(公理)」,認為「它們像所有有根據的數學定理一樣」,是正確的。與此同時,他特別注意到,把統計學應用於其他領域有一個困難,例如,在設想「基本錯誤的相等幾率」時,就是這樣。他暗示要把統計學應用於「活生生的人,……人類社會,……社會學等等,而不是只應用於……力學的粒子」;同時,他讓人們注意把這樣一些研究置於概率論的基礎之上而產生的「原則困難」。他說,「如果採用了可以從其他基本的觀念推演出來的相等概率的概念」,那麼,這一學科「就像數學的任何其他分支學科一樣精確和嚴密」(1905,602)。

  在1983-1984這一學年期間,在比勒費爾德大學舉辦了一次國際性的跨學科的講習會和專題討論會。會議的主題是「1800-1930年間概率論的革命」。在那裡所進行的各種研究令人信服地表明,19世紀在社會和科學的思想中持續不斷的變革,展現出一種革命性的力量。但是,我認為,沒有任何根據可以證明,由於統計力學的發展,革命(即使有的話)到19世紀末時已經不只是一種論著中的革命了。另一方面,隨著一個概率論的或統計學的基礎引入遺傳學和進化概念被引入量子論,物理學和生物學在20世紀都經歷了一次非常徹底的變革。量子革命通常被看作是科學中所曾發生的革命中最偉大的一次革命,而且,由簡單的因果關係向統計學的考察的轉變,一般被認為是它的最革命的特點之一。因此,我敢斷言,在20世紀,根本就沒有什麼科學中全面的革命意義上的『概率論的革命」(或更確切地說,「概率化的革命」。這至多只是一場直到20世紀初才獲得科學中的革命的潛能的論著中的革命。到1914年,在一本題為《概率》的著作(它對「不同學科的科學知識中」的概率和統計學作了非專門性的一般解釋)中,法國數學家埃米爾·玻萊爾指出,「我們幾乎沒有意識到,我們已經面對著一場真正的科學革命」(p.ii)。

  應用科學中的革命

  史學家們一致認為,19世紀的偉大革命之一就是科學作為推動技術和社會變革的一種重要力量的崛起。阿爾弗雷德·諾思·懷特海對這場革命作了非常簡明的描述;與此同時,他指出,19世紀最偉大的發明,是發明的方法的發明。我們在下述一個簡單的事實中可以看到這種技術或工藝革新的生產力:杜邦公司1942年的銷售總額中,幾乎有一半的產品在1928年之前是沒有的,或者是那時沒有大規模地生產的。而這就是公司的一個研究計劃的影響和作用。

  儘管我們今天常說,基本的科學知識中的進步,對於改變我們衣食住行的必需品、我們通訊和運輸的材料,以及我們謀生和進行國防的方式,起到了相當大的推動作用,但是,這在一百年之前一般是不可能的。從培根和笛卡爾以來的科學家和哲學家都曾預言,知識的發展和進步將使人成為他的環境的主人,但是,關於這一進程,並沒有多少令人信服的例證。我們有一個大約是在1800年之前的重要例證,它標明,一位科學家完全為了知識的進步而進行的研究,作為一個始料未及的副產品,導致一個對人類有益的實際發明。這就是本傑明·富蘭克林對導體和絕緣體的性質、靜電感應現象、物體的形狀對其電的特性的影響、接地在電效應中的作用,以及輝光、放電、瞬態放電和劇形放電(電暈放電)的性質所作的基本研究。這一研究使富蘭克林認識到閃電放電是一種電的現象,然後又促使他進行了檢驗這個結論的實驗,並最終發明了避雷針裝置——緩釋帶電的雲,從而避免雷擊,以至把雷擊安全地傳導到地面。遲在19世紀初,在法國的一次公共的辯論中,關於避雷針的這一段個人歷史可能還被當作基本的科學研究如何導致出人意料的實踐發明的一個基本範例而舉證。但是,如果由此產生的實際發明與飲食或健康、通訊或運輸、國防或謀生的方式直接聯繫在一起的話,那麼,這個例證實際上是不能令人信服的。

  就科學對技術和工藝的影響而言,在19世紀發生了革命性的變革,這首先表現在染色工業中。在19世紀中期以前,染料是從自然資源獲得的:植物,昆蟲,甲殼類動物,以及某些礦物。到19世紀末,合成生產出的染料幾乎完全取代了這些自然的產物。這場革命的第一個階段是,1856年威廉·亨利·珀金髮現了一種新的染料,它可以把絲綢染成一種紅紫色(苯胺紫)。那時,他還只是一名學生,而且他所發現的染色物質則是從事生產合成奎寧的不成功實驗的最後結果。生產這種染料的原料是煤焦油,而煤焦油則是通過蒸餾法生產從煤中提取的照明氣體的過程的副產品。珀金開始成批生產新的苯胺紫染料,而且在隨後幾年,一種新的工業產生了。這種新的工業的基礎就是能夠合成現有的通常是從自然產物中獲取的染料或者創造全新的合成染料的化學家們所進行的研究。這些新的染料比較便宜,而且染色也較快。我們也許看到了這種新的工藝和技術在一種染料——苗草紅或「土耳其紅」——的歷史中的革命作用。19世紀60年代,茜草紅是從茜草屬植物茜草根中提取的;而苗草屬植物則是普羅旺斯的主要農作物,而且在西班牙北部、意大利、希臘和北非被大面積種植和栽培。幾十年之後,合成的茜草紅幾乎消滅了西草屬植物農業,而在今天,茜草屬植物只是作為珍品在植物園中種植。

  與許多比較早的合成染料大不相同,茜草紅——染料化學家維特認為(哈伯1958,83)——是「化學研究中一種新的趨勢,即有目的的化學的第一個結果」(「人工合成的基本原理」;見O.N.維特1913,520)。化學家們現在被組織起來,以把他們的研究引向特定的技術和工藝目標。最後一種被合成產品取代的天然染料是靛藍,它的生產幾乎是完全由英國人控制的。早在1880年,靛藍實際上就已經合成了,但是,這個製作過程比較緩慢,而且代價也相當大。在合成的靛藍1897年上市之前,引導這方面的研究,把從事工業研究的化學家們的科學勞動及其學術成果集中起來,花去了17年的時間。巴登州的苯腔和碳酸鈉製造廠為此投入的費用合計達五百萬美元,這是到那時就單個研究項目所投入費用的最高數目。三年以後,德國的總產量相當於從25萬英畝的土地上收穫的靛藍的產量(布隆克,1901)。

  正是在染料工業中,科學第一次顯示了它的巨大的技術和工藝力量。廣大地區的整個經濟幾乎在一夜之間被徹底改變了,這正像以前專門用於種植和栽培茜草類植物的土地或者被翻耕轉向種植葡萄或其他作物,或者被迫休耕或荒蕪一樣。國家和世界的命運受到應用化學研究的成果的影響。在19世紀60年代初,德國幾乎沒有什麼染料工業,但到了1881年,它則成了世界上幾乎一半染料的生產國。到1896年,這個數字上升到刀嘰,到1900年則達到SO-90%。德國的製造商成功地奪取了世界市場,在很大程度上是由於他們「能夠利用一大批相當能幹的化學家;這些化學家對研究的通常是不辭勞苦的熱愛,是除瑞士外的其他國家不能相比的」(哈伯1958,129)。最後,還應當注意到,由於不穩定的染料是易爆炸物,所以,德國由政府倡導和資助的染料工業在為世界戰爭生產著一個潛在的武器庫。

  認識應用化學中的革命所產生的巨大影響的另一個方面是要注意到,英國的東印度公司1896年出口的依靠天然原料生產的靛藍,其價值達350萬英鎊之多,到1913年,這個數字跌至6千英鎊。此外,1913年德國(合成靛藍的主要生產者)出口的靛藍的價值約為200萬英鎊。但是,其他一些資料表明,這場革命的全景是,在這十七年間,靛藍染料的價格由每磅約8個先令下降到每磅約3.5先令(見芬德利1916,237)。

  
上一頁 b111.net 下一頁
雲台書屋